Cooling Enhancement of a Photovoltaic Panel Through Ferrofluid Stimulation Using a Magnetic-Wind Turbine

Authors

  • Masoud Rahimi CFD Research Center, Department of Chemical Engineering, Razi University, Kermanshah, Iran
  • Neda Azimi Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
  • Negin Heidari Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
Abstract:

Wind energy is used to rotate a magnetic turbine in order to remove heat from the surface of a photovoltaic (PV) panel. A three-bladed turbine, which rotates with wind energy, has rotational motion underneath the studied PV panel in order to move Magnetic Nano-Particles (MNPs). In addition, effects of the magnetic field strength (B=450-830 mT), rotational velocity of the magnetic turbine (ω), and the concentration of MNPs (ϕ) on the heat removal from the PV panel area were investigated. Results showed that heat removal from PV panel was intensified by motion of pinned MNPs in the ferrofluid via the exerted external force of magnetic field. Concurrent application of available magnetic field along with ferrofluid led to 7.6-24 % temperature reduction for a PV panel. Furthermore, the produced electrical energy of the PV panel was augmented between 2.55-3.13 W depending on ϕ, ω, and B. Moreover, the impact of ω on cooling performance was also investigated, and a significant enhancement to generated power was observed. Eventually, the maximum amount of the produced power (3.13 W), maximum power enhancement percentage (32.63 %), and thermal efficiency (24 %) were achieved for B=830 mT, ω=50 cycles/min, and ϕ=0.05 (w/v).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Physical Modeling of a Hybrid Wind Turbine-solar Panel System Using Simscape Language (RESEARCH NOTE)

Being sustainable and producing little waste products, the renewable energy knows a rapid deployment. Unfortunately, the intermittent characteristic of these energies makes them difficult to control. The influence of this aleatory character can be reduced with the coupling of two or more sources of renewable energy and secondly with a sound management of storage systems. This new configuration ...

full text

Development of a Wind Turbine Rotor Flow Panel Method

The ongoing trend towards larger wind turbines intensifies the demand for more physically realistic wind turbine rotor aerodynamics models that can predict the detailed transient pressure loadings on the rotor blades better than current engineering models. In this report the mathematical, numerical, and practical aspects of a new wind turbine rotor flow simulation code is described. This wind t...

full text

Synthesis and characterization of magnetic γ- Fe2O3 nanoparticles: Thermal cooling enhancement in a sinusoidal headbox

Nano-size maghemite (γ-Fe2O3) particles were prepared in one step using ultrasound radiation. The obtained nanoparticles were characterized by SEM, TEM , XRD, FTIR, and VSM. The results revealed that the synthesized nanoparticles were spherical, mono-dispersed and uniform. Furthermore, the crystalline structure of nanoparticles endorsed by X-ray diffraction study. The FTIR spectra have provided...

full text

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

full text

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

full text

Performance improvement of a wind turbine blade using a developed inverse design method

The purpose of this study is to improve the aerodynamic performance of wind turbine blades, using the Ball-Spine inverse design method. The inverse design goal is to calculate a geometry corresponds to a given pressure distribution on its boundaries. By calculating the difference between the current and target pressure distributions, geometric boundaries are modified so that the pressure di...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 4

pages  35- 52

publication date 2019-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023